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Synchronization of switching processes in coupled Lorenz systems

V. S. Anishchenko, A. N. Silchenko, and I. A. Khovanov
Department of Physics, Saratov State University, 83 Astrakhanskaya Street, 410026 Saratov, Russia

~Received 21 April 1997; revised manuscript received 25 August 1997!

Synchronization of two symmetrically coupled Lorenz systems, each of them considered a chaotic bistable
system, is investigated numerically. A phenomenon of synchronization of the mean frequencies of switchings
in coupled chaotic bistable systems is found. Bifurcations taking place in the system are analyzed. It is shown
that there is the region on the ‘‘coupling-detuning’’ parameter plane where the mean frequencies of switchings
coincide with a certain accuracy.@S1063-651X~97!12412-6#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

As is already known, one of the mechanisms of se
organization in nonlinear oscillatory systems is synchroni
tion. As a result of this phenomenon the interacti
subsystems demonstrate the tendency to oscillate with e
or rationally related frequencies. In the case of we
coupling between subsystems the effect of frequency lock
takes place and for strong coupling the suppression of on
the natural frequencies is observed@1#. Recent investigations
have shown that similar effects take place when the inter
ing subsystems are irregular.

Synchronization of coupled chaotic oscillators h
become the subject of much discussion in the past dec
@2#. There are several approaches to the definition
synchronization of chaotic systems. In the simplest case,
identical chaotic systems are to be considered synchron
if their states coincide while the dynamics in time rema
chaotic. This case was denoted ‘‘full’’ synchronization@3#.
Another way to define chaotic synchronization was propo
by Pecora and Carroll@4#. They introduced into consider
ation the drive-response scheme and determined
conditions of synchronization by means of condition
Lyapunov exponents. In@5# the case of weakly couple
chaotic oscillators was considered. It was established tha
interaction of nonidentical chaotic oscillators can lead to
perfect locking of their phases, whereas their amplitu
remain chaotic and uncorrelated.

In Refs. @6,7# the classical concept of synchronizatio
was generalized to a certain class of chaotic syste
for which the basic frequency is distinguishable in t
power spectrum. In this case, chaotic synchronization
considered an interaction of natural time scales of s
systems that coincide at the moment of synchronizat
In @8,9# it is shown that a similar interaction also takes pla
when these time scales are random values. The effec
the mean switching frequency locking was discovered
noisy bistable systems driven by a strong-amplitude perio
force @8#. It has been shown that there are regions on
‘‘noise intensity amplitude of periodic excitation’’ paramet
plane where the mean switching frequency remains cons
and coincides with the frequency of the external perio
force.
571063-651X/98/57~1!/316~7!/$15.00
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The effect of stochastic synchronization of two coupl
bistable systems driven by independent noise sources
discovered in@9#. It has been shown that the bifurcation of
two-dimensional stationary probability density takes pla
when the coupling is increased. Kramers’s rates@10# of
subsystems draw closer to one another when the couplin
increased and coincide at the bifurcation.

According to the results mentioned the effects of synch
nization and synchronizationlike phenomena take place b
in the case of an interaction of chaotic systems with clea
distinguishable time scales and in the case of an interac
of stochastic systems when the mean frequency of swi
ings plays the role of such time scales. It is reasonable
consider the interaction of chaotic dynamical systems, wh
may be considered chaotic bistable systems~Lorenz’s system
or Chua’s circuit @11#, for example!. Switchings in such
systems are caused by the natural chaotic dynamics and
be characterized by the mean frequency of switchings.
influence of the external periodic force on the process
switchings in Chua’s circuit was considered in@12#. It was
found that the effect of forced synchronization
switchings caused by the ‘‘chaos-chaos’’ intermittency tak
place.

In this paper we investigate synchronization of switchin
in two symmetrically coupled Lorenz systems, both
them being chaotic and bistable@13,14#. We use the well
known ‘‘model of two states’’@15# to describe the dyna
mics of the Lorenz system as a random process of switch
between two states. It has been shown that there is a
gion on the ‘‘coupling-detuning’’ parameter plane in whic
the processes of switchings in subsystems become cohe
We discuss the bifurcational mechanism of this pheno
enon.

In Sec. II we present the model and results of num
ical experiments. In Sec. III we discuss bifurcations of sa
dle cycles and equilibrium states that take place in
system and their relation with the synchronization of t
processes of switching in subsystems. The construc
of the synchronization region for mean frequencies
switchings is described in Sec. IV. Conclusions are given
Sec. V.
316 © 1998 The American Physical Society
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II. MODEL AND NUMERICAL SIMULATION

The dynamical system under study is

ẋ15s~y12x1!1g~x22x1!,

ẏ15r 1x12x1z12y1 ,

ż15x1y12z1b, ~1!

ẋ25s~y22x2!1g~x12x2!,

ẏ25r 2x22x2z22y2 ,

ż25x2y22z2b.

The parameters of system~1! are s510, r 1528.8, r 2528,
andb58/3 and the Lorenz attractor exists in each subsyst
When

x185H 11, x1.0

21, x1,0,
x285H 11, x2.0

21, x2,0

model ~1! might be considered a system of two symme
cally coupled bistable subsystems@14#. Switchings in sub-
systems are caused by the natural chaotic dynamics of
renz systems. The process of switchings can be characte
by the residence time probability densityp(t) @16# in one of
the states, marked11 and21. Analogously to a stochasti
bistable system, it is possible to introduce the mean
quency of transitions from one state to another. The m
period of switchings being the first moment ofp(t) can be
determined as follows

^T&5E
0

`

tp~t!dt.

Hence the mean frequency of switchings is^ f &52p/^T&.
Here and throughout this paper, the mean frequency
switchings is considered a natural statistical time scale
subsystems. The mean frequencies of switchings^ f 1&,^ f 2&
versus coupling are shown in Fig. 1. In the case ofg50, the
frequencies of switchings are different because of the de
ing betweenr 1 and r 2. The increase of parameterr leads to
the growth of the mean frequency of switchings. Frequenc
^ f 1& and^ f 2& decrease when coupling increases. They re
a minimum value atg'2.1 ~this peculiarity in the behavio
of the mean frequencies will be disscused below in Sec.!.
A further increase of the coupling leads to the frequenc
^ f 1& and ^ f 2& approaching each other and coinciding
g56.0. The common mean frequency of switchings does
coincide with the initial value of either̂f 1& or ^ f 2&.

Thus, when the coupling grows the mean frequencies
switchings draw closer to one another and coincide for so
critical value of coupling. Such behavior is typical for fre
quencies of coupled regular oscillators. Analogously to
classical theory of oscillations, this effect might be call
synchronization of the processes of switchings in two s
metrically coupled chaotic bistable systems.

The coherence degree of the processes of switching
subsystems can be estimated by means of coherent fun
.
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G~v!5
uSx

18x
28
~v!u

ASx
18
~v!Sx

28
~v!

,

where Sx
18
(v) and Sx

28
(v) are the power spectra of th

processesx18(t) andx28(t), respectively, andSx
18 ,x

28
(v) is the

mutual spectrum of the processesx18(t) andx28(t). It is well
known that the coherence function varies from zero to un
The approach ofG to unity within some interval of frequen
cies testifies to the growth of coherence in this interval. T
results of calculations are presented in Fig. 2. In the cas
zero couplingG'0 ~curve 1 in Fig. 2!. When coupling is
increased the coherence function in the low-frequency
main grows. This demonstrates the growth of the cohere
degree between the processes of switchings in subsyst
The process of synchronization may be illustrated also
means of Lyapunov exponents and mutual phase project
of phase trajectories, which are presented in Figs. 3 an
respectively. It is clearly seen in Fig. 3~a! that the second

FIG. 1. Mean frequencies of switchings 1 (^ f 1&) and 2 (̂ f 2&) vs
coupling parameterg.

FIG. 2. Coherence functionG(v) for different values of cou-
pling: 1, g50.0; 2,g51.0; 3,g52.1; 4,g54.05; and 5,g56.0.
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Lyapunov exponent changes its sign atg'4. At this mo-
ment the mean frequencies of switchings are nearly equa
each other~Fig. 1!, although the excursions from the lin
x1'x2 are frequent, as seen in Fig. 4~b!. Further growth of
coupling causes the coincidence of the frequencies of swi
ings and the saturation of two Lyapunov exponents, as s
in Figs. 3~a! and 3~b!. For strong coupling the excursion
from the linex1'x2 become impossible and phase trajec
ries do not leave a certain small-d neighborhood of sym-
metrical subspace@Fig. 4~d!#. Thus, when the coupling is
strong enough the Lorenz-type attractor exists in a cer
small-d neighborhood of symmetrical subspace, which mig
be considered a mathemetical image of synchronous osc
tions in the system. The above results of numerical simu
tion illustrate the qualitative changes in system~1!; however,
they do not touch upon the bifurcational mechanism of
phenomenon of mutual synchronization of switchings, wh
is considered in the following section.

III. BIFURCATIONAL ANALYSIS OF THE SYSTEM

It is known that the Lorenz attractor includes a denum
able set of saddle cycles that surround a pair of symme

FIG. 3. Lyapunov exponentsl vs coupling parameter:~a! the
four largest Lyapunov exponents~the positive Lyapunov exponen
is saturated for strong coupling! and~b! the saturation of one of the
negative Lyapunov exponent. It should be noted that in the cas
an interaction of identical subsystems the Lyapunov expon
demonstrate similar behavior and two of them are saturated with
growth of the coupling parameter.
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cally located equilibrium states@17#. The existence of these
saddle cycles causes the residence time probability densi
have a clearly distinguishable structure@Fig. 5~a!#. The re-
sults of investigations show that the first peak in the re
dence time probability density corresponds to the sad

of
ts
he

FIG. 4. (x1 ,x2) phase projections of phase trajectories for d
ferent values of coupling:~a! g51.0, the case of weak coupling;~b!
g54.05, the beginning of synchronization of switchings;~c!
g56.0; and~d! g530, synchronous oscillations of subsystems. T
phase trajectory~d! does not leave thed neighborhood of symmetri-
cal subspace. (d is smaller than the typical scales of the attrac
and in our cased;1021.!

FIG. 5. Residence time probability densitiesp(t) for different
values of the coupling parameter:~a! g50.0 and~b! g50.2.
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57 319SYNCHRONIZATION OF SWITCHING PROCESSES IN . . .
cycle, which makes one rotation around each of the equ
rium states. It is called a one-turn cycle. All the consequ
reasonings about the evolution of some family of sad
cycles will be derived from the information about the evo

FIG. 6. One-turn cycles belonging to the familiesCs
1 ,Cs

3 ~solid
line! andCs

2 ,Cs
4 ~dashed line!. Black full circles show the position

of equilibrium statesP0–P8.

FIG. 7. One-turn cyclesC11 and C21: ~a! (x1,x2) projection
and ~b! (x1,z1) projection on the plane. Filled circles show th
positions of the equilibrium statesP0–P8.
-
t

e

tion of the one-turn cycle, which belongs to this family, b
cause all the other saddle cycles of this family undergo
same bifurcations as the appointed one-turn cycle. For
case of zero coupling the residence time probability densi
are presented in Fig. 5~a! ~the residence time probability den
sity for the first subsystem is marked by the solid line and
one for the second subsystem by the dashed line!. The dis-
placement of the peaks in the residence time probability d
sity can be explained by the detuning of the parameters
the subsystems.

Let us consider the qualitative changes of the structure
phase spaceR6 when coupling is introduced. In the case
weak coupling (g,0.2), there exist four families of saddl
cycles Cs

1 ,Cs
2 ,Cs

3 ,Cs
4 , which define the structure of phas

spaceR6. The one-turn cycles from these families are p
sented in Fig. 6. We should note that the families mention
above coincide in pairs with the families that exist in t
subsystems when the coupling vanishes~familiesCs

1 ,Cs
3 co-

incide with the family in the first subsystem andCs
2 ,Cs

4 with
the family in the second subsystem, respectively!. Hence, in
the case of weak coupling the mean period of switchings
each subsystem is defined by the family of saddle cyc
existing in the subsystem when the coupling is equal to ze
The mean frequencies of switchings are different, while
probabilities of visiting different regions of phase space
almost the same.

When the coupling reaches the valueg50.273 51 the

FIG. 8. Multipliersr1 ,r2 ,r3 vs coupling parameter for~a! the
saddle cycleC11 and~b! the saddle cycleC21. Every saddle cycle
in R6 has six multipliers, but we consider only the three larg
because one of the three others is equal to unity and the rema
ones are of order 1024.
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320 57V. S. ANISHCHENKO, A. N. SILCHENKO, AND I. A. KHOVANOV
tangent bifurcation takes place in the system. Due to
bifurcation the pair of saddle cyclesC11,C21 forms~Fig. 7!.
The three largest multipliers of cyclesC11 andC21 versus
the parameterg are presented in Figs. 8~a! and 8~b!, respec-
tively. It is clearly seen that the saddle cyclesC11 andC21

evolve in different ways. The cycleC11 contracts to the
symmetrical subspace (x15x2, y15y2, andz15z2) and be-
comes stable in four directions~the dimension of the stabl
manifold increases from 3 to 4! with the growth of the cou-
pling, whereas the saddle cycleC21 becomes unstable an
disappears due to tangency bifurcation~one of the multipli-
ers becomes11!. Numerical simulation shows that a den
merable set of pairs of saddle cycles is formed in the sys
when the coupling increases. They form the two families
saddle cyclesCn

11 and Cn
21 . The family Cn

11 is located in
the neighborhood of symmetrical subspace and beco
more attractive when the parameter of coupling increa
~the dimensions of the stable manifolds of all saddle cyc
belonging to this family increases!, while the family Cn

21

becomes unstable and disappears with the growth of c
pling. It is possible to regard that this family disappears
g53.04 because the one-turn cycleC21 finally disappears.

The above results can be illustrated by means of the r
dence time probability density~Figs. 5 and 9!. For weak
couplingg50.2 @Fig. 5~b!# subsystems respond to each oth
as to small perturbations and the changes in the probab
densities are also very small. The growth of coupling lead
the destruction of the structures in the residence time p
ability densities. When the coupling reaches the value
g54.05@Fig. 9~a!# the structures in the residence time pro
ability densities become similar to each other and the mu
plier of the saddle cycleC11 becomes equal to unity a
clearly seen from Fig. 8~a!. Moreover, the second Lyapuno
exponent changes its sign at this moment, thus allowing u
consider it as the beginning of synchronization of the p
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cesses of switchings in the subsystems.
Along with the bifurcations of saddle cycles consider

above, Hopf’s bifurcations in the neighborhoods of the eq
librium states take place. System~1! has nine equilibrium
states~Fig. 6!, which have the following coordinates for zer
coupling:

FIG. 9. Residence time probability densitiesp(t) for different
values of the coupling parameter:~a! g 5 4.05 and~b! g 5 6.0.
P0 :~0,0,0,0,0,0!, P1 :~a1 ,a1 ,a3 ,a2 ,a2 ,a4!, P2 :~a1 ,a1 ,a3,0,0,0!, P3 :~a1 ,a1 ,a3 ,2a2 ,2a2 ,a4!,

P4 :~0,0,0,2a2 ,2a2 ,a4!, P5 :~2a1 ,2a1 ,a3 ,2a2 ,2a2 ,a4!, P6 :~2a1 ,2a1 ,a3,0,0,0!,

P7 :~2a1 ,2a1 ,a3 ,a2 ,a2 ,a4!, P8 :~0,0,0,a2 ,a2 ,a4!,

a15Ab~r 121!, a25Ab~r 221!, a35r 121, a45r 221
.
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Local properties of the flow in the neighborhoods of t
equilibrium states are investigated using well-known co
puter programLOCBIF @18#.

Investigations have shown that equilibrium statesP0–P8
undergo in pairs Hopf’s bifurcations and saddle cycles
formed when coupling is introduced. The equilibrium sta
P1 ,P5 undergo bifurcation at g50.515; P3 ,P7 at
g50.7944; P4 ,P8 at g51.191; andP2 ,P6 at g51.473.
These bifurcations do not lead to the global reconstruction
the structure of phase space; however, the saddle cycles
arise via bifurcations influence the absolute value of
-

e
s

f
hat
e

mean period of switchings. The saddle cyclesC1
0 andC2

0 are
formed in the neighborhoods of the equilibrium statesP1 and
P5, respectively, and become stable in the four directio
@the three largest multipliers from the coupling of cycleC2

0

are presented in Fig. 10~b!#. As a result, cyclesC1
0 and C2

0

turn out to be the most attractive cycles among the sad
cycles that are located in the neighborhood of symmetr
subspace~the dimensions of the stable manifolds of sadd
cycles that belong to the familyCn

11 are equal to 3 for weak
coupling, while the dimensions of the stable manifolds of t
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57 321SYNCHRONIZATION OF SWITCHING PROCESSES IN . . .
cyclesC1
0 andC2

0 are equal to 4!. Because of the twisting o
phase trajectories around these saddle cycles (C1

0 and C2
0)

the residence times in both states11 and21 increases and
as a result, the absolute value of the mean frequencie
switchings decreases~Fig. 1!. The increase of coupling~0.27
,g,3.04! leads to a number of bifurcations resulting in t
formation of saddle cycles. The formation of saddle cycles
R6 with the growth of coupling leads to the more effecti
mixing and causes the destruction of structures in the r
dence time probability densities.

It was mentioned above that the family of saddle cyc
Cn

21 disappears atg53.04 and the saddle cycles that belo
to the familiesCs

1 ,Cs
2 ,Cs

3 ,Cs
4 are unstable with respect t

asymmetric perturbations. Saddle cyclesC1
0 andC2

0 that are
also unstable to asymmetric perturbations increase in
and rotate around the symmetrical subspace@Fig. 10~a!#. A
further increase of coupling leads to the growth of dime
sions of stable manifolds of the saddle cycles belonging
the family Cn

11 ~the dimension of the stable manifold of th
one-turn cycleC11 becomes equal to 4 asg54.05). As a
consequence, the neighborhood of the symmetrical subs
becomes the most frequently visited region in the ph
space. For these reasons, the growth and approach o
mean frequenies of switchings can be observed.

Thus bifurcational analysis of system~1! shows that the
bifurcations of saddle cycles play the key role in the rec
struction of the structure of the phase space. As a resu

FIG. 10. ~a! (x1,x2) projections of the saddle cyclesC1
0 andC2

0

~the solid line is forg50.9 and the dashed line is forg54.8) and
~b! dependence of the multipliers of the saddle cycleC2

0 vs the
coupling parameter.
of
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these bifurcations a family of saddle cyclesCn
11 is formed in

the neighborhood of symmetrical subspace. This family
comes the most attractive family of saddle cycles in
phase space. Therefore, the probability of the hits of tra
tories in the neighborhood of symmetrical subspace beco
largest and the probability of the coherent switchings
creases.

IV. REGION OF SYNCHRONIZATION OF SWITCHINGS

It is well known from the classical theory of oscillation
that the fundamental characteristic of synchronization i
region of coherent behavior of subsystems on the coupl
detuning plane. Therefore, we try to construct a similar
gion of synchronization for two coupled bistable dynamic
systems. The parameterr is chosen as the control paramete
which allows us to change the mean frequency of switchi
in the subsystem. The detuning of subsystems in this cas
p5r 1 /r 2, where r 1 ,r 2 are the parameters of the first an
second subsystems, respectively. The time scales that c
acterize subsystems are the random values~mean frequencies
of switchings^ f 1&,^ f 2&) and it is difficult to speak about the
construction of the synchronization region on the couplin
detuning plane in the classical sense. It is reasonable to
struct the region where the frequencies^ f 1& and ^ f 2& coin-
cide with some accuracy. As mentioned above, the m
frequencies of switchinĝ f 1&,^ f 2& become nearly equal to
each other~they differ by 0.8%) at the moment when one
the multipliers of the one-turn cycleC11 becomes equal to
unity and one of the Lyapunov exponents changes its s
Taking into account these results, it is natural to consider
bifurcation linel 1 ~Fig. 11! for the saddle cycleC11 on the
coupling-detuning parameter plane as the boundary of
region of switching synchronization. Moreover, it is possib
to build the region on the same parameter plane, inside
which the states of oscillators are very close to each o
and oscillations of nonidentical subsystems can be con
ered synchronized. The construction of such region requ

FIG. 11. Regions of synchronization: 1 is the region of synch
nization of the processes of switchings and 2 is the region of s
chronous oscillations.



he
ra
ou
ch
ro
uc
la
s
o
s

st
o

be

b
th

lly
em
o
o
e

m
o

s of
the
of
tri-

mes
lity
nd
gs.

m
the

he

the
fre-
e

This
ns
ro-
led

of

of

322 57V. S. ANISHCHENKO, A. N. SILCHENKO, AND I. A. KHOVANOV
some preliminary explanation. As is already known, in t
case of an interaction of identical oscillators, the integ
manifold exists in symmetrical subspace. The growth of c
pling causes the asymptotic stability of this manifold, whi
leads to the full synchronization of subsystems. The int
duction of parameter detunings is equivalent to the introd
tion of some perturbation in the system of identical oscil
tors and thus the system of coupled nonidentical oscillator
equivalent to the perturbed system of coupled identical
cillators. As known from the theory of integral manifold
@19#, for perturbed system the local integral manifold exi
in a certain small neighborhood of the integral manifold
the nonperturbed system. This local integral manifold
comes stable when the coupling increased~line l 2 in Fig. 11!
and the phase trajectory does not leave the small neigh
hood of symmetrical subspace, causing, in particular,
saturation of Lyapunov exponents.

V. CONCLUSION

In this work we have investigated two symmetrica
coupled chaotic bistable systems. Switchings in such syst
are caused by the natural chaotic dynamics. The phen
enon of mutual synchronization of mean frequencies
switchings in subsystems is found. The growth of the coh
ence degree between switchings in subsystems is acco
nied by the qualitative reconstruction of the structure
.
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phase space. This reconstruction is due to the bifurcation
equilibrium states and saddle cycles that take place in
system. As a result of tangent bifurcations, the family
saddle cycles is formed in some neighborhood of symme
cal subspace. When coupling increases this family beco
more attractive, which causes the growth of the probabi
visiting of the neighborhood of symmetrical subspace a
leads to synchronization of the processes of switchin
Hopf’s bifurcations in the neighborhoods of equilibriu
states, which also take place in the system, do not lead to
global rebuilding of the attractor; however, they influence t
mean period of switchingŝT&.

We have been found that there is a region on
detuning-coupling parameter plane in which the mean
quencies of switchings coincide within the limit of som
accuracy and switchings in subsystems are coherent.
region includes the domain inside of which the oscillatio
of nonidentical subsystems might be considered synch
nized. Hence we conclude that synchronization of coup
chaotic bistable systems begins from the synchronization
the processes of switchings in subsystems.
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