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Synchronization of switching processes in coupled Lorenz systems
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Synchronization of two symmetrically coupled Lorenz systems, each of them considered a chaotic bistable
system, is investigated numerically. A phenomenon of synchronization of the mean frequencies of switchings
in coupled chaotic bistable systems is found. Bifurcations taking place in the system are analyzed. It is shown
that there is the region on the “coupling-detuning” parameter plane where the mean frequencies of switchings
coincide with a certain accurachyS1063-651X97)12412-6

PACS numbes): 05.45+b

I. INTRODUCTION The effect of stochastic synchronization of two coupled
bistable systems driven by independent noise sources was

AS.'S alre.ady kqown, one of the mecha_msms of S.e”_discovered if9]. It has been shown that the bifurcation of a
organization in nonlinear oscillatory systems is synchroniza;

. : g .~ two-dimensional stationary probability density takes place
tion. As a result of this phenomenon the interacting T ;
. . when the coupling is increased. Kramers's raf&6] of
subsystems demonstrate the tendency to oscillate with equal L
subsystems draw closer to one another when the coupling is

or rationally related frequencies. In the case of Weakmcreased and coincide at the bifurcation.

coupling between subsystems the effect of frequ:_ency locking According to the results mentioned the effects of synchro-
takes place and for strong coupling the suppression OT one %fization and synchronizationlike phenomena take place both
the natural frequencies is obsenjdd. Recent investigations

have shown that similar effects take place when the interacf-—n the case of an interaction of chaotic systems with clearly

ing subsystems are irregular. dlstanU|sha_1bIe time scales and in the case of an |ntera§:t|on
Synchronization of coupled chaotic oscillators hasOf stochastic systems when the mean frequency of switch-

become the subject of much discussion in the past decad@9s Plays the role of such time scales. It is reasonable to
[2]. There are several approaches to the definition ofonsider the interaction of chaotic dynamical systems, which
synchronization of chaotic systems. In the simplest case, twBay be considered chaotic bistable syst¢hmsenz’s system
identical chaotic systems are to be considered synchronizedf Chua’s circuit[11], for example. Switchings in such

if their states coincide while the dynamics in time remainsSystems are caused by the natural chaotic dynamics and may
chaotic. This case was denoted “full” synchronizatif3y. be characterized by the mean frequency of switchings. The
Another way to define chaotic synchronization was proposeihfluence of the external periodic force on the process of
by Pecora and Carro[4]. They introduced into consider- switchings in Chua’s circuit was considered[it2]. It was
ation the drive-response scheme and determined thisund that the effect of forced synchronization of
conditions of synchronization by means of conditional switchings caused by the “chaos-chaos” intermittency takes
Lyapunov exponents. 5] the case of weakly coupled place.

chaotic oscillators was considered. It was established that the |n this paper we investigate synchronization of switchings
interaction of nonidentical chaotic oscillators can lead t0 &n two symmetrically coupled Lorenz systems, both of
perfect locking of their phases, whereas their amplitudeshem peing chaotic and bistablé3,14. We use the well
remain chaotic and uncorrelated. ~_ known “model of two states”[15] to describe the dyna-

In Refs. [6,7] the classical concept of synchronization yicq of the Lorenz system as a random process of switchings
was g_enerahzed to a certain <_:Iass_ .Of C_haOt'C SySteMBeween two states. It has been shown that there is a re-
for which the basic fr_equency IS d|§t|ngwshablt_a n th? ion on the “coupling-detuning” parameter plane in which
power spectrum. In th!s case, chaot|c_ synchronization | he processes of switchings in subsystems become coherent.
considered an interaction of natural time scales of SUbWe discuss the bifurcational mechanism of this phenom-
systems that coincide at the moment of synchronization. P
In [8,9] it is shown that a similar interaction also takes placeenon
when these time scales are random values. The effect of !N Se€c. Il we present the model and results of numer-
the mean switching frequency locking was discovered irical experiments. In S_ec_. lIl we discuss bifurcations o_f sad-
noisy bistable systems driven by a strong-amplitude periodi€l® cycles and equilibrium states that take place in the
force [8]. It has been shown that there are regions on thsystem and their relation with the synchronization of the
“noise intensity amplitude of periodic excitation” parameter Processes of switching in subsystems. The construction
plane where the mean switching frequency remains consta®f the synchronization region for mean frequencies of
and coincides with the frequency of the external periodicswitchings is described in Sec. IV. Conclusions are given in
force. Sec. V.

1063-651X/98/5{1)/316(7)/$15.00 57 316 © 1998 The American Physical Society



II. MODEL AND NUMERICAL SIMULATION
The dynamical system under study is
X1= 0(y1=X1) + ¥(Xa— X1),
V1= 1X1—X1Z1— Y1,
Z;=X1y1—- b, 1)
Xo= (Y= Xo) + ¥(X1 = Xp),
Yo=1 X2~ X2~ Y7,
Zy=Xzy,— 25b.

The parameters of systeftt) are 0=10, r;=28.8,r,=28,

andb=28/3 and the Lorenz attractor exists in each subsystem.

When

+1,
-1,

x1>0
x1<0,

+1,
-1,

X>>0
X2<0

X1:

model (1) might be considered a system of two symmetri-
cally coupled bistable subsysterisd]. Switchings in sub-
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FIG. 1. Mean frequencies of switchings ¢f{)) and 2 (f,)) vs
coupling parametey.
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systems are caused by the natural chaotic dynamics of Ld¥here S¢ () and S, (w) are the power spectra of the

renz systems. The process of switchings can be characteriz
by the residence time probability densfiy7) [16] in one of

@docesseg; (t) andx;(t), respectively, an($xi,xé(w) is the
mutual spectrum of the processegt) andx;(t). It is well

the states, markeé 1 and—1. Analogously to a stochastic qwn that the coherence function varies from zero to unity.
bistable system, it is possible to introduce the mean freqpq approach of to unity within some interval of frequen-
quency of transitions from one state to another. The meapjgg testifies to the growth of coherence in this interval. The

period of switchings being the first moment pf7) can be
determined as follows

(T)= j: mp(7)d7.

Hence the mean frequency of switchinggi$=2=/(T).

Here and throughout this paper, the mean frequency of

results of calculations are presented in Fig. 2. In the case of
zero couplingl’~0 (curve 1 in Fig. 2. When coupling is
increased the coherence function in the low-frequency do-
main grows. This demonstrates the growth of the coherence
degree between the processes of switchings in subsystems.
The process of synchronization may be illustrated also by
means of Lyapunov exponents and mutual phase projections
f phase trajectories, which are presented in Figs. 3 and 4,

switchings is considered a natural statistical time scale ofegpectively. It is clearly seen in Fig(8 that the second

subsystems. The mean frequencies of switchiffgs,(f,)
versus coupling are shown in Fig. 1. In the case/ef0, the

frequencies of switchings are different because of the detun

ing betweerr,; andr,. The increase of parametedeads to

the growth of the mean frequency of switchings. Frequencies

(f1) and(f,) decrease when coupling increases. They reac
a minimum value aty~2.1 (this peculiarity in the behavior
of the mean frequencies will be disscused below in Seg. Il

A further increase of the coupling leads to the frequencies

(fy) and (f,) approaching each other and coinciding at

y=6.0. The common mean frequency of switchings does not

coincide with the initial value of eitheff,) or (f,).

Thus, when the coupling grows the mean frequencies of
switchings draw closer to one another and coincide for some

critical value of coupling. Such behavior is typical for fre-

guencies of coupled regular oscillators. Analogously to the

classical theory of oscillations, this effect might be called

synchronization of the processes of switchings in two sym

metrically coupled chaotic bistable systems

T T =—

F

Tw) g,
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The coherence degree of the processes of switchings in FIG. 2. Coherence functiofi(w) for different values of cou-
subsystems can be estimated by means of coherent functigiing: 1, y=0.0; 2, y=1.0; 3,y=2.1; 4, y=4.05; and 5,y=6.0.
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FIG. 4. (x1,X,) phase projections of phase trajectories for dif-
ferent values of couplinga) y= 1.0, the case of weak coupling)
v=4.05, the beginning of synchronization of switchings)
v=6.0; and(d) y=30, synchronous oscillations of subsystems. The
phase trajectoryd) does not leave thé neighborhood of symmetri-
cal subspace.q is smaller than the typical scales of the attractor
and in our caseé~10"1))

cally located equilibrium statdd7]. The existence of these
saddle cycles causes the residence time probability density to
have a clearly distinguishable structdféig. 5@]. The re-

four largest Lyapunov exponentthe positive Lyapunov exponent Sults of investigations show that the first peak in the resi-
is saturated for strong couplingnd(b) the saturation of one of the dence time probability density corresponds to the saddle

negative Lyapunov exponent. It should be noted that in the case of
an interaction of identical subsystems the Lyapunov exponents
demonstrate similar behavior and two of them are saturated with the
growth of the coupling parameter.

Lyapunov exponent changes its signjyat4. At this mo-
ment the mean frequencies of switchings are nearly equal t
each other(Fig. 1), although the excursions from the line
X1~X, are frequent, as seen in Figlb4 Further growth of
coupling causes the coincidence of the frequencies of switch
ings and the saturation of two Lyapunov exponents, as see
in Figs. 3a) and 3b). For strong coupling the excursions
from the linex;~Xx, become impossible and phase trajecto-
ries do not leave a certain smdllneighborhood of sym-
metrical subspacgFig. 4(d)]. Thus, when the coupling is
strong enough the Lorenz-type attractor exists in a certair
small-5 neighborhood of symmetrical subspace, which might

be considered a mathemetical image of synchronous oscillap .

tions in the system. The above results of humerical simula-
tion illustrate the qualitative changes in systéty] however,
they do not touch upon the bifurcational mechanism of the
phenomenon of mutual synchronization of switchings, which
is considered in the following section.

Ill. BIFURCATIONAL ANALYSIS OF THE SYSTEM

It is known that the Lorenz attractor includes a denumer-
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FIG. 5. Residence time probability densitipér) for different
able set of saddle cycles that surround a pair of symmetrivalues of the coupling parametés) y=0.0 and(b) y=0.2.
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FIG. 6. One-turn cycles belonging to the familie$,C2 (solid
line) andC2,C? (dashed ling Black full circles show the position
of equilibrium state$(—Pg.

cycle, which makes one rotation around each of the equilib-
rium states. It is called a one-turn cycle. All the consequent
reasonings about the evolution of some family of saddle
cycles will be derived from the information about the evolu-
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FIG. 8. Multipliersp,,p,,p3 vs coupling parameter fai@) the
saddle cycleC*? and(b) the saddle cycl€ . Every saddle cycle
in R® has six multipliers, but we consider only the three largest
because one of the three others is equal to unity and the remaining
ones are of order 1I0.

tion of the one-turn cycle, which belongs to this family, be-
cause all the other saddle cycles of this family undergo the
same bifurcations as the appointed one-turn cycle. For the
case of zero coupling the residence time probability densities
are presented in Fig(#® (the residence time probability den-
sity for the first subsystem is marked by the solid line and the
one for the second subsystem by the dashed.lifiee dis-
placement of the peaks in the residence time probability den-
sity can be explained by the detuning of the parameters of
the subsystems.

Let us consider the qualitative changes of the structure of
phase spac®® when coupling is introduced. In the case of
weak coupling ¢<0.2), there exist four families of saddle
cyclesCt,C2,C3,c?, which define the structure of phase
spaceR®. The one-turn cycles from these families are pre-
sented in Fig. 6. We should note that the families mentioned
above coincide in pairs with the families that exist in the
subsystems when the coupling vaniskiesnilies C1,C3 co-
incide with the family in the first subsystem a@d,C2 with
the family in the second subsystem, respectiveience, in
the case of weak coupling the mean period of switchings in
each subsystem is defined by the family of saddle cycles
existing in the subsystem when the coupling is equal to zero.
The mean frequencies of switchings are different, while the
probabilities of visiting different regions of phase space are

and (b) (x,,z;) projection on the plane. Filled circles show the almost the same.

positions of the equilibrium staté2,—Pg.

When the coupling reaches the valye=0.273 51 the
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tangent bifurcation takes place in the system. Due to this 0 ' ' '
bifurcation the pair of saddle cycl&s'?,C ™! forms(Fig. 7).
The three largest multipliers of cycl&"! andC~* versus
the parametety are presented in Figs(& and 8b), respec- '
tively. It is clearly seen that the saddle cyce$! andC ! P
evolve in different ways. The cycl€™! contracts to the 002 L
symmetrical subspacex{=x,, Y1=Y,, andz;=2,) and be-
comes stable in four directior(the dimension of the stable
manifold increases from 3 to) 4vith the growth of the cou- oor
pling, whereas the saddle cyo ! becomes unstable and
disappears due to tangency bifurcati@me of the multipli-
ers becomes-1). Numerical simulation shows that a denu- 02 04 06 038
merable set of pairs of saddle cycles is formed in the systen T

when the coupling increases. They form the two families of
saddle cycle, > andC, . The familyC ' is located in

the neighborhood of symmetrical subspace and become
more attractive when the parameter of coupling increase:
(the dimensions of the stable manifolds of all saddle cyclesr®
belonging to this family increasgswhile the family C;l 002 L
becomes unstable and disappears with the growth of cou
pling. It is possible to regard that this family disappears as

y=3.04 because the one-turn cy&e ! finally disappears. oo T 1
The above results can be illustrated by means of the resi . M 1
dence time probability densityFigs. 5 and 9 For weak 0.00 b = o A;:;ﬂm
T

couplingy=0.2[Fig. 5(b)] subsystems respond to each other
as to small perturbations and the changes in the probability
densities are also very small. The growth of coupling leads to FIG. 9. Residence time probability densitipér) for different
the destruction of the structures in the residence time probyralues of the coupling parametés) y = 4.05 and(b) y = 6.0.
ability densities. When the coupling reaches the value of

v=4.05[Fig. Ya)] the structures in the residence time prob-cesses of switchings in the subsystems.

ability densities become similar to each other and the multi- Along with the bifurcations of saddle cycles considered
plier of the saddle cycleC™! becomes equal to unity as above, Hopf's bifurcations in the neighborhoods of the equi-
clearly seen from Fig. @). Moreover, the second Lyapunov librium states take place. Systeth) has nine equilibrium
exponent changes its sign at this moment, thus allowing us tetategFig. 6), which have the following coordinates for zero
consider it as the beginning of synchronization of the pro-coupling:

(a)

0.04 T T T

(b)

0.03 -

Py:(0,0,0,0,0,9, P;:(a;,21,23,8,,82,84), P,:(21,21,83,0,0,0, Pj3:(a;,a;,a3,—ay,—a,,as),
P4:(0,O,0,_a2,_a2,a4)1 Ps:(_al,_al,a3,_a2,_az,a4), P6:(—al,—a1,a3,0,0,0,

P;:(—a;,—a;,a3,a3,a3,a4), Pg:(0,0,08;,a;,a,),

a;=\b(r;—1), a,=+b(r,—1), az=r;—1, a,=r,—1

Local properties of the flow in the neighborhoods of themean period of switchings. The saddle cyd$sandC) are
equilibrium states are investigated using well-known com-ormed in the neighborhoods of the equilibrium sta@gsand
puter program.ocBiF [18]. Ps, respectively, and become stable in the four directions

Investigations have shown that equilibrium stal&s-Ps  [the three largest multipliers from the coupling of cy@8
undergo in pairs Hopf's bifurcations and saddle cycles arg, o presented in Fig. 19)]. As a result cycleﬁ‘j and Cg

formed when coupling is introduced. The equilibrium states,[urn out to be the most attractive cycles among the saddle

P1,Ps undergo bifurcation aty=0.515; P3,P; at cycles that are located in the neighborhood of symmetrical

vy=0.7944; P,,Pg at y=1.191; andP,,Pg at y=1.473. . ; .
These bifurcations do not lead to the global reconstruction O?UbSpaCdthe dimensions of the stable manifolds of saddle

ho+1
the structure of phase space; however, the saddle cycles tH¢cles that belong to the familg, ~ are equal to 3 for weak
arise via bifurcations influence the absolute value of thecoupling, while the dimensions of the stable manifolds of the
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00t Pas ] these bifurcations a family of saddle cyc@ﬁ'l is formed in
2 ittt the neighborhood of symmetrical subspace. This family be-
-20 ) ) ' ) ' : : : : comes the most attractive family of saddle cycles in the
05 1.0 15 20 25 3.0 35 4.0 4.5 5.0 - . .
y phase space. Therefore, the probability of the hits of trajec-

tories in the neighborhood of symmetrical subspace becomes

FIG. 10. (a) (x1,X2) projections of the saddle cycl&) andC;  |argest and the probability of the coherent switchings in-
(the solid line is fory=0.9 and the dashed line is for=4.8) and  reases.

(b) dependence of the multipliers of the saddle cy@@z vs the
coupling parameter. IV. REGION OF SYNCHRONIZATION OF SWITCHINGS
It is well known from the classical theory of oscillations

. : that the fundamental characteristic of synchronization is a
0
phase trajectories around these saddle cyd@Sand C3) region of coherent behavior of subsystems on the coupling-

the residence times in both stated and—1 increases and, qetyning plane. Therefore, we try to construct a similar re-

as a result, the absolute value of the mean frequencies @fion of synchronization for two coupled bistable dynamical
switchings decreasefig. 1). The increase of couplin®.27  gystems. The parameteis chosen as the control parameter,
<y<3.04 leads to a number of bifurcations resulting in the yhich allows us to change the mean frequency of switchings
formation of saddle cycles. The formation of saddle cycles inp the subsystem. The detuning of subsystems in this case is
Rf_s Wlth the growth of coupling I_eads to the more effectlvep:rl/rz wherer,,r, are the parameters of the first and
mixing and causes the destruction of structures in the resiecond subsystems, respectively. The time scales that char-
dence time probability densities. . acterize subsystems are the random valoesan frequencies
[twas mentioned above that the family of saddle cyclessf switchings(f,),(f,)) and it is difficult to speak about the
C, " disappears ay=3.04 and the saddle cycles that belongconstruction of the synchronization region on the coupling-
to the familiesCg,CZ,C3,C¢ are unstable with respect to detuning plane in the classical sense. It is reasonable to con-
asymmetric perturbations. Saddle cyc@SandC) that are  struct the region where the frequencids) and(f,) coin-
also unstable to asymmetric perturbations increase in sizeide with some accuracy. As mentioned above, the mean
and rotate around the symmetrical subspdéég. 10a)]. A frequencies of switchingf,),(f,) become nearly equal to
further increase of coupling leads to the growth of dimen-each othefthey differ by 0.8%) at the moment when one of
sions of stable manifolds of the saddle cycles belonging tahe multipliers of the one-turn cycl€™! becomes equal to
the family Crfl (the dimension of the stable manifold of the unity and one of the Lyapunov exponents changes its sign.
one-turn cycleC™! becomes equal to 4 ag=4.05). As a  Taking into account these results, it is natural to consider the
consequence, the neighborhood of the symmetrical subspabéurcation linel, (Fig. 11) for the saddle cycl€** on the
becomes the most frequently visited region in the phaseoupling-detuning parameter plane as the boundary of the
space. For these reasons, the growth and approach of tihegion of switching synchronization. Moreover, it is possible
mean frequenies of switchings can be observed. to build the region on the same parameter plane, inside of
Thus bifurcational analysis of systeffy) shows that the which the states of oscillators are very close to each other
bifurcations of saddle cycles play the key role in the recon-and oscillations of nonidentical subsystems can be consid-
struction of the structure of the phase space. As a result acdred synchronized. The construction of such region requires

cyclesC? andC) are equal to % Because of the twisting of
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some preliminary explanation. As is already known, in thephase space. This reconstruction is due to the bifurcations of
case of an interaction of identical oscillators, the integralequilibrium states and saddle cycles that take place in the
manifold exists in symmetrical subspace. The growth of cousystem. As a result of tangent bifurcations, the family of
pling causes the asymptotic stability of this manifold, whichsaddle cycles is formed in some neighborhood of symmetri-
leads to the full synchronization of subsystems. The introcal subspace. When coupling increases this family becomes
duction of parameter detunings is equivalent to the introducmore attractive, which causes the growth of the probability
tion of some perturbation in the system of identical oscilla-visiting of the neighborhood of symmetrical subspace and
tors and thus the system of coupled nonidentical oscillators ileads to synchronization of the processes of switchings.
equivalent to the perturbed system of coupled identical osHopf's bifurcations in the neighborhoods of equilibrium
cillators. As known from the theory of integral manifolds states, which also take place in the system, do not lead to the
[19], for perturbed system the local integral manifold existsglobal rebuilding of the attractor; however, they influence the
in a certain small neighborhood of the integral manifold of mean period of switchingéT).

the nonperturbed system. This local integral manifold be- We have been found that there is a region on the
comes stable when the coupling increadléw |, in Fig. 11)  detuning-coupling parameter plane in which the mean fre-
and the phase trajectory does not leave the small neighboguencies of switchings coincide within the limit of some
hood of symmetrical subspace, causing, in particular, theccuracy and switchings in subsystems are coherent. This

saturation of Lyapunov exponents. region includes the domain inside of which the oscillations
of nonidentical subsystems might be considered synchro-
V. CONCLUSION nized. Hence we conclude that synchronization of coupled

] . ) . chaotic bistable systems begins from the synchronization of
coupled chaotic bistable systems. Switchings in such systems

are caused by the natural chaotic dynamics. The phenom-
enon of mutual synchronization of mean frequencies of
switchings in subsystems is found. The growth of the coher-
ence degree between switchings in subsystems is accompa- This work was supported by the Russian Foundation of
nied by the qualitative reconstruction of the structure ofFundamental Natural Sciences Grant No. 95-0-8.3-66.
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